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Abstract: In a plane-wave matrix model we discuss a two-body scattering of gravitons

in the SO(3) symmetric space. In this case the graviton solutions are point-like in contrast

to the scattering in the SO(6) symmetric space where spherical membranes are interpreted
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with a constant radius and the other one elliptically rotates. Then the one-loop effective

action is computed by using the background field method. As the result, we obtain the
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model would be closely related to that in the light-front eleven-dimensional supergravity.
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1. Introduction and summary

M-theory is considered as the unified theory of superstring theories. The basic degrees

of freedom of string theory and M-theory are fully encoded in matrix models [1 – 3]. The

matrix model approaches lead to non-perturbative formulations of superstring theory and

M-theory. For example, the BFSS matrix model is a supersymmetric matrix quantum

mechanics, which is believed to be a discrete light-cone quantized M-theory (light-front

M-theory). The matrix model also describes the low-energy dynamics of N D0-branes

of type IIA superstring theory [4]. Furthermore it goes to the light-cone action for the

supermembrane in eleven dimensions [5] in the large N limit. The same type of matrix

model as the BFSS matrix model can be obtained from the supermembrane theory via a

matrix regularization [5].

The matrix model on a pp-wave background was proposed by Berenstein-Maldacena-

Nastase (BMN) [6], and it is often called plane-wave matrix model or BMN matrix model.

The pp-wave background is given by the following metric and the constant four-form field

strength [7]:

ds2 = −2dx+dx− −

(
3∑

i=1

(µ

3

)2
(xi)2 +

6∑

a=4

(µ

6

)2
(xa)2

)
(dx+)2 +

9∑

I=1

(dxI)2 , (1.1)

F+123 = µ .
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This background is maximally supersymmetric and preserves 32 supersymmetries. The

action of the matrix model is given by1

Spp =

∫
dt Tr

[ 1

2R
DtX

IDtX
I +

R

4
([XI ,XJ ])2 + iΘ†DtΘ − RΘ†γI [Θ,XI ]

−
1

2R

(µ

3

)2
(Xi)2 −

1

2R

(µ

6

)2
(Xa)2 − i

µ

3
εijkXiXjXk − i

µ

4
Θ†γ123Θ

]
, (1.2)

where the indices of the transverse nine-dimensional space are I, J = 1, . . . , 9 and R is the

radius of the circle compactified along x− . All degrees of freedom are N × N Hermitian

matrices and the covariant derivative Dt with the gauge field A is defined by Dt = ∂t −

i[A, ] . The plane-wave matrix model can be obtained from the supermembrane theory on

the pp-wave background [8, 9] via the matrix regularization [5]. In particular, in the case of

the pp-wave, the correspondence of superalgebra [10] between the supermembrane theory

and the matrix model, including brane charges, is established by the works [9] and [11].

Then an N = (4, 4) type IIA string theory can be constructed from the supermembrane

theory on the pp-wave [12, 13]. The corresponding matrix string theory on the pp-wave

has been constructed in [12] by using the method [14] (For other matrix string theories on

pp-waves, see [15]).

This matrix model may be considered as a deformation of the BFSS matrix model

while it still preserves 32 supersymmetries. The plane-wave matrix model allows a static

1/2 BPS fuzzy sphere with zero light-cone energy to exist as a classical solution, since the

action of the matrix model includes the Myers term [16]. The structure of the vacua of the

plane-wave matrix model is enriched by the fuzzy sphere. The spectra around the vacua

are now fully clarified [8, 17 – 19]. The trivial vacuum XI = 0 has also been identified with

a single spherical five-brane vacuum in [20]. Except for the static fuzzy sphere, there are

various classical solutions and those are well studied [21, 11, 22, 23]. Stabilities of the fuzzy

sphere are shown in several papers [8, 24, 25]. Thermal stabilities of classical solutions are

also investigated in [26 – 28].

In our previous papers [25, 29], we have discussed a two-body scattering of spherical

membranes which are considered as giant gravitons. Then we considered a configuration in

a sub-plane in the SO(6) symmetric space where a spherical membrane (with p+ = N1/R)

rotates with a constant radius r1 and another one (with p+ = N2/R) elliptically rotates

with r2 ± ε . For this setup we have computed the effective action by using the background

field method. The resulting effective action with respect to r ≡ r2 − r1 is2

Γeff = ε4

∫
dt

[
35

27 · 3

N1N2

r7
−

385

211 · 33

[
2(N2

1 + N2
2 ) − 1

]N1N2

r9
+ O

(
1

r11

)]
+ O(ε6) .

This result strongly suggests that the spherical membranes should be interpreted as spher-

ical gravitons as discussed by Kabat and Taylor [30]. Here we should remark that the

subleading term is 1/r9 and it is repulsive. In the BFSS case the subleading term is 1/r11

order and it implies the dipole-dipole interaction. According to the interpretation, the

1Hereafter we will rescale the gauge field and parameters as A → RA , t → t/R , µ → Rµ .
2In fact, r should be understood as |r2 − r1| , as noted in [29].
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Figure 1: The configurations of two gravitons.

1/r9 term would imply the dipole-graviton interaction. This is a new effect intrinsic to the

pp-wave background.

In this paper we will discuss a two-body scattering in the SO(3) symmetric space.

Then the configuration for the computation consists of two point-like gravitons in contrast

to the spherical membrane cases. The one rotates with a constant radius r1 and the other

elliptically rotates with r2 ± ε , as drawn in figure 1. The resulting effective action is

obtained as

Γeff = ε4

∫
dt

[
35

24

1

r7
+

385

576

1

r9
+ O

(
1

r11

) ]
+ O(ε6) .

In contrast to the spherical membrane cases, the subleading term becomes attractive.

The organization of this paper is as follows: in section 2, by using the background

field method around the setup mentioned above, we compute the functional determinants.

Before performing the path integral for the fluctuations, it is necessary to take care of

the time-dependence of the configuration of classical solutions. In section 3 the functional

determinants are evaluated by expanding them with respect to the infinitesimal parameter

ε . The evaluation is too complicated, and so we use the Mathematica [31]. The resulting

effective action gives rise to the 1/r7-type potential as the leading term. Section 4 is

devoted to a conclusion and discussions.

2. Two-body interaction of point-like gravitons

From now on, let us examine the interaction potential between the point-like gravitons

by using the setup proposed in Fig. 1. We will use the background field method as usual.

Then the matrix fields are decomposed into backgrounds and fluctuations as follows:

XI = BI + Y I , Θ = 0 + Ψ . (2.1)

Here BI are classical backgrounds while Y I and Ψ are quantum fluctuations around them.

The fermionic background is taken to be zero.
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The background for the configuration in Fig. 1 is described by the following 2 × 2

matrices:

BI =

(
BI

(1) 0

0 BI
(2)

)
(I = 1, . . . , 9) ,

B1
(1) = r1 cos

(µ

3
t
)

, B2
(1) = r1 sin

(µ

3
t
)

,

B1
(2) = (r2 + ε) cos

(µ

3
t
)

, B2
(2) = (r2 − ε) sin

(µ

3
t
)

B3
(s) = Ba

(s) = 0 (s = 1, 2 ; a = 4, . . . , 9) . (2.2)

Two gravitons rotating in the 1-2 plane are diagonally embedded. Each of the gravitons

carries a unit of the light-cone momentum and it is represented by a 1× 1 matrix. One of

them rotates with a constant radius r1 and the other one rotates elliptically with r2 ± ε .

In order to perform the path integral for the fluctuations, we need to fix the gauge

symmetry. In the matrix model computation, it is convenient to choose the background

field gauge,

Dbg
µ Aµ

qu ≡ DtA + i[BI ,XI ] = 0 . (2.3)

Then the corresponding gauge-fixing SGF and Faddeev-Popov ghost SFP terms are given by

SGF + SFP =

∫
dt Tr

(
−

1

2
(Dbg

µ Aµ
qu)

2 − C̄∂tDtC + [BI , C̄][XI , C]

)
. (2.4)

Now, by inserting the decomposition of the matrix fields (2.1) into the matrix model action,

we get the gauge fixed plane-wave action S (≡ Spp + SGF + SFP) expanded around the

background. The resulting action is read as S = S0 +S2 +S3 +S4 , where Sn represents the

action of order n with respect to the quantum fluctuations and, for each n, its expression

is

S0 =

∫
dt Tr

[
1

2
(ḂI)2−

1

2

(µ

3

)2
(Bi)2−

1

2

(µ

6

)2
(Ba)2+

1

4
([BI , BJ ])2−i

µ

3
εijkBiBjBk

]
,

S2 =

∫
dt Tr

[
1

2
(Ẏ I)2 − 2iḂI [A, Y I ] +

1

2
([BI , Y J ])2 + [BI , BJ ][Y I , Y J ] − iµεijkBiY jY k

−
1

2

(µ

3

)2
(Y i)2 −

1

2

(µ

6

)2
(Y a)2 + iΨ†Ψ̇ − Ψ†γI [Ψ, BI ] − i

µ

4
Ψ†γ123Ψ

−
1

2
Ȧ2 −

1

2
([BI , A])2 + ˙̄CĊ + [BI , C̄][BI , C]

]
,

S3 =

∫
dt Tr

[
− iẎ I [A, Y I ] − [A, BI ][A, Y I ] + [BI , Y J ][Y I , Y J ] + Ψ†[A, Ψ]

− Ψ†γI [Ψ, Y I ] − i
µ

3
εijkY iY jY k − i ˙̄C[A, C] + [BI , C̄][Y I , C]

]
,

S4 =

∫
dt Tr

[
−

1

2
([A, Y I ])2 +

1

4
([Y I , Y J ])2

]
. (2.5)

Here the action of the first order becomes zero by using the equations of motion.
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For the justification of one-loop computation or the semi-classical analysis, it should be

made clear that S3 and S4 can be regarded as perturbations. For this purpose, following [8],

we rescale the fluctuations and parameters as

A → µ−1/2A , Y I → µ−1/2Y I , C → µ−1/2C , C̄ → µ−1/2C̄ ,

r1,2 → µr1,2 , ε → µε , t → µ−1t . (2.6)

Under this rescaling, the action S becomes

S = S2 + µ−3/2S3 + µ−3S4 , (2.7)

where the parameter µ in S2, S3 and S4 has been replaced by 1 and so those do not have

µ dependence. Now it is obvious that, in the large µ limit, S3 and S4 can be treated

as perturbations and the one-loop computation gives the sensible result. Note that the

analysis in the S2 part is exact in the µ → ∞ limit.

Based on the structure of the classical background, we now take the quantum fluctu-

ations in the 2 × 2 off-diagonal matrices:

A =

(
0 Φ0

Φ0† 0

)

, Y I =

(
0 ΦI

ΦI† 0

)

, Ψ =

(
0 χ

χ† 0

)

,

C =

(
0 C

C† 0

)

, C̄ =

(
0 C̄

C̄† 0

)

. (2.8)

Here we are interested in the interaction between the gravitons and so we set the diagonal

components to zero. It is an easy task to show the quantum stability of each of the gravitons

by following the method in [25, 29].

It is convenient to introduce the following quantities:

r ≡ r2 − r1 , g(t) = ε2 + 2εr cos

(
2

3
t

)
, Gm ≡

1

∂2
t + r2 + m2

. (2.9)

Here Gm is a propagator for a mass m . By using them we can express the functional

determinants after the path integral in simpler forms. We will perform the path integral

below for each of the parts, bosons, ghosts and fermions.

2.1 Boson fluctuation

Let us first consider the bosonic parts. The Lagrangian LB is composed of two parts:

LB = LSO(3) + LSO(6) , (2.10)

LSO(3) = −|Φ̇0|2 +
(
r2 + g(t)

)
|Φ0|2 + |Φ̇i|2 − (r2 + g(t))|Φi|2 −

1

32
|Φi|2 (2.11)

+
2

3
i(r + ε) sin

(
t

3

)
(Φ0†Φ1 − Φ1†Φ0) −

2

3
i(r − ε) cos

(
t

3

)(
Φ0†Φ2 − Φ2†Φ0

)

−i(r + ε) cos

(
t

3

)
(Φ2†Φ3 − Φ3†Φ2) − i(r − ε) sin

(
t

3

)
(Φ3†Φ1 − Φ1†Φ3) ,

LSO(6) = |Φ̇a|2 − (r2 + g(t))|Φa|2 −
1

62
|Φa|2 . (2.12)

Here the gauge field is included in LSO(3) . The next task is to evaluate each of the parts.

– 5 –
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SO(3) part. Now we shall consider the SO(3) part. In the Lagrangian for the SO(3)

part, the four variables Φ0 , Φi (i = 1, 2, 3) are contained. The analysis of this part is

complicated since these are coupled. In order to carry out the path integral, it is convenient

to decouple the variables as much as possible. For this purpose we first take the coordinate

transformation

Φ1 ≡ cos

(
t

3

)
Φr − sin

(
t

3

)
Φθ , Φ2 ≡ sin

(
t

3

)
Φr + cos

(
t

3

)
Φθ , (2.13)

and introduce the new variables Φr and Φθ instead of Φ1 and Φ2 . The Lagrangian after

the transformation is rewritten as

LSO(3) = −|Φ̇0|2 + (r2 + g(t))|Φ0|2 + |Φ̇r|2 − (r2 + g(t))|Φr |2 + |Φ̇θ|2 − (r2 + g(t))|Φθ|2

+|Φ̇3|2 − (r2 + g(t) + (1/32))|Φ3|2 +
2

3
(Φr†Φ̇θ − Φθ†Φ̇r)

+
2

3
iε sin(2t/3)(Φ0†Φr − Φr†Φ0) −

2

3
i(r − ε cos(2t/3))(Φ0†Φθ − Φθ†Φ0)

+iε sin(2t/3)(Φ3†Φr − Φr†Φ3) + i(r + ε cos(2t/3))(Φ3†Φθ − Φθ†Φ3) . (2.14)

Taking the shift of Φ0 and Φ3 defined by

Φ0 ≡ Φ0′ −
2

3
i(G−1

0 + g(t))−1

[
ε sin

(
2

3
t

)
Φr − (r − ε cos

(
2

3
t

)
)Φθ

]
,

Φ3 ≡ Φ3′ + i(G−1
1/3 + g(t))−1

[
ε sin

(
2

3
t

)
Φr + (r + ε cos

(
2

3
t

)
)Φθ

]
,

we obtain the following Lagrangian:

LSO(3) = Φ0′†(G−1
0 + g(t))Φ0′ − Φ3′†(G−1

1/3 + g(t))Φ3′ − Φr†(G−1
0 + g(t))Φr

−Φθ†(G−1
0 + g(t))Φθ +

2

3
Φr†Φ̇θ −

2

3
Φθ†Φ̇r (2.15)

−Φr†

{
ε2 sin (2t/3)

[
4

9
(G−1

0 + g(t))−1 − (G−1
1/3 + g(t))−1

]
sin (2t/3)

}
Φr

−Φθ†

{
(r − ε cos (2t/3))

[
4

9
(G−1

0 + g(t))−1 − (G−1
1/3 + g(t))−1

]
(r − ε cos (2t/3))

}
Φθ

+Φθ†

{
(r − ε cos (2t/3))

[
4

9
(G−1

0 + g(t))−1 + (G−1
1/3 + g(t))−1

]
ε sin(2t/3)

}
Φr

+Φr†

{
ε sin (2t/3)

[
4

9
(G−1

0 + g(t))−1 + (G−1
1/3 + g(t))−1

]
(r − ε cos (2t/3))

}
Φθ .

Note that Φ0 and Φ3 are decoupled from Φr and Φθ at this stage, but Φr and Φθ are still

coupled. We can however perform the path integral for Φr and Φθ by using the formula

(
A B

C D

)
=

(
A 0

C 1

)(
1 A−1B

0 D − CA−1B

)
. (2.16)
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The resulting effective action for the SO(3) part is given by

eiΓSO(3) =
[
det(G−1

0 + g(t)) · det(G−1
1/3 + g(t)) · det A · det(D − CA−1B)

]−1
, (2.17)

A = G−1
0 + g(t) + ε2 sin (2t/3)

[
4

9

1

G−1
0 + g(t)

−
1

G−1
1/3

+ g(t)

]
sin (2t/3) ,

D = G−1
0 + g(t) +

4

9
(r − ε cos (2t/3))

1

G−1
0 + g(t)

(r − ε cos (2t/3))

− (r + ε cos (2t/3))
1

G−1
1/3 + g(t)

(r + ε cos (2t/3)) ,

B = −
2

3
∂t −

4

9
ε sin (2t/3)

1

G−1
0 + g(t)

(r − ε cos (2t/3))

−ε sin (2t/3)
1

G−1
1/3 + g(t)

(r + ε cos (2t/3)) ,

C =
2

3
∂t −

4

9
(r − ε cos (2t/3))

1

G−1
0 + g(t)

ε sin(2t/3)

− (r + ε cos (2t/3))
1

G−1
1/3 + g(t)

ε sin(2t/3) .

Then we will examine the SO(6) part.

SO(6) part. It is straightforward to perform the path integral for the SO(6) part. The

result is

eΓSO(6) = e
iΓ

(0)
SO(6)(det

(
1 + G1/6 g(t)

)
)−6 , (2.18)

where the ε-independent part is written as

e
iΓ

(0)
SO(6) = (det G−1

1/6)
−6 . (2.19)

2.2 Ghost fluctuation

Next we shall consider the ghost part. The Lagrangian for the ghost part is given by

LG = ˙̄CĊ† + ˙̄C†Ċ − (r2 + g(t))(C̄C† + C̄†C) . (2.20)

The path integral for (2.20) is immediately evaluated as

[det
(
G−1

0 + g(t)
)
]2 . (2.21)

2.3 Fermion fluctuation

Finally, let us discuss the fermionic part. The Lagrangian for the fermion fluctuations is

given by

LF = 2
[
iχ†χ̇ − rχ†

(
γ1 cos

(
t

3

)
+ γ2 sin

(
t

3

))
χ

−εχ†

(
γ1 cos

(
t

3

)
− γ2 sin

(
t

3

))
χ −

i

4
χ†γ123χ

]
. (2.22)
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Then we decompose the spinor χ into two components as follows:

χ =

(
χAα

χ̂A
α

)
, χ̂A

α ≡ εαβχ̂Aβ . (2.23)

According to this decomposition, the SO(9) gamma matrices should also be decomposed.

In our analysis only γ1 , γ2 and γ3 are necessary and hence we write down only them here,

γi =

(
−σi × 1 0

0 σi × 1

)
(i = 1, 2, 3) . (2.24)

For the detail of the decomposition of the gamma matrices, see [8, 25]. The Lagrangian

after the decomposition is written as

LF = iχ†Aαχ̇Aα −
1

4
χ†AαχAα + iχ̂†α

A
˙̂χA
α +

1

4
χ̂†α

A χ̂A
α (2.25)

+χ†Aα
[
(r + ε) cos(t/3) · σ1 + (r − ε) sin(t/3) · σ2

] β

α
χAβ

−χ̂†α
A

[
(r + ε) cos(t/3) · σ1 + (r − ε) sin(t/3) · σ2

] β

α
χ̂A

β .

Here it is convenient to introduce new spinors χ′ and χ̃ defined by

χAα = (e−iσ3 t

6 ) β
α χ′

Aβ , χ̂ = (e−iσ3 t

6 ) β
α χ̃A

β . (2.26)

By using the formulae:

eiσ3 t

6
[
σ1 cos(t/3) + σ2 sin(t/3)

]
e−iσ3 t

6 = σ1 ,

eiσ3 t

6

[
σ1 cos(t/3) − σ2 sin(t/3)

]
e−iσ3 t

6 = σ1 cos(2t/3) − σ2 sin(2t/3) , (2.27)

we can rewrite the Lagrangian as

LF = iχ′†Aαχ̇′
Aα−

1

4
χ′†Aαχ′

Aα+
1

6
χ′†Aα(σ3) β

α χ′
Aβ+iχ̃†α

A
˙̃χA
α +

1

4
χ̃†α

A χ̃A
α +

1

6
χ̃†Aα(σ3) β

α χ̃Aβ

+χ′†Aα
[
σ1(r + ε cos(2t/3)) − σ2ε sin(2t/3)

] β

α
χ′

Aβ

−χ̃†α
A

[
σ1(r + ε cos(2t/3)) − σ2ε sin(2t/3)

] β

α
χ̃A

β .

Then we express the two components of the spinors χ′ and χ̃ as

χ′ = (π, η) , χ̃ = (π̃, η̃) . (2.28)

When the Lagrangian is described in terms of π, η, π̃ and η̃, it is decomposed into two

parts: (π, η)-system and (π̃, η̃)-system. The Lagrangian for each of these system are given

by

LF = Lπ,η + Lπ̃,η̃ , (2.29)

Lπ,η = iπ†π̇ −
1

12
π†π + iη†η̇ −

5

12
η†η

+(r + εe
2
3
it)π†η + (r + εe−

2
3
it)η†π , (2.30)

Lπ̃,η̃ = iπ̃† ˙̃π +
5

12
π̃†π̃ + iη̃† ˙̃η +

1

12
η̃†η̃

−(r + εe
2
3
it)π̃†η̃ − (r + εe−

2
3
it)η̃†π̃ . (2.31)
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By using the formula (2.16) , we can perform the path integral for π , η , π̃ and η̃ . The

effective action is given by

eiΓF = det

[(
i∂t −

1

12

)(
i∂t −

5

12

)
− r2

]4

det

[
1 −

1

(i∂t −
1
12)(i∂t −

5
12 ) − r2

E

]4

×

× det

[(
i∂t +

1

12

)(
i∂t +

5

12

)
− r2

]4

det

[
1 −

1

(i∂t + 1
12)(i∂t + 5

12 ) − r2
Ẽ

]4

, (2.32)

where E and Ẽ are defined by, respectively,

E = rεe
2
3
it +

(
i∂t −

1

12

)
εe−

2
3
it 1

i∂t −
1
12

(r + εe
2
3
it) ,

Ẽ = rεe
2
3
it +

(
i∂t +

5

12

)
εe−

2
3
it 1

i∂t + 5
12

(r + εe
2
3
it) . (2.33)

Now we have finished the path integration for the fluctuations. The remaining task is

to evaluate the functional determinant. This will be discussed in the next section.

3. Effective action

From now on we evaluate the determinant factors obtained in the previous section. In the

evaluation we use the formula,

det(1 + εg) = exp

(
εtrg −

1

2
ε2trg2 + · · ·

)
,

and therefore the resulting effective action is expressed as an expansion in terms of ε ,

Γeff = Γ
(0)
eff + ε2Γ

(2)
eff + ε4Γ

(4)
eff + O(ε6) , (3.1)

where the terms of order εn with odd n are absent in our computation in accordance with

the logic of our previous work [29].

Before going to the analysis of the ε-dependent part, let us consider the ε-independent

part Γ
(0)
eff and show the one-loop flatness:

Γ
(0)
eff = 0 .

3.1 One-loop flatness

For the SO(3) part, the effective action is

eiΓSO(3) =
[
det(G−1

0 ) · det(G−1
1/3

) · detA · det(D − CA−1B)
]−1

, (3.2)

where the components A,B,C and D are given by

A = G−1
0 , B = −

2

3
∂t , C =

2

3
∂t D = G−1

0 +
4

9
r2G0 − r2G1/3 . (3.3)
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Then we obtain that

D − CA−1B = ∂2
t + r2 +

4

9
−

r2

∂2
t + r2 + 1

9

. (3.4)

Hence we can rewrite a part of the determinant factors as follows:

det(G−1
1/3) · det(D − CA−1B) = det

[(
∂2

t + r2 +
4

9

)(
∂2

t + r2 +
1

9

)
− r2

]

= det

[

∂2
t +

(
∂2

t + r2 −
2

9

)2
]

= det

[(
∂2

t + i∂t + r2 −
2

9

)(
∂2

t − i∂t + r2 −
2

9

)]
.

By using the formula
∫ ∞

−∞

dk

2π
ln(−k2 + 2pk + m2 − iε) = i

√
m2 + p2 , (3.5)

the contribution to the effective action is evaluated as

2

√
r2 +

1

36
.

This includes the only contribution from the physical degrees of freedom and the unphysical

mode related to the gauge field is surely canceled out with the ghost contribution.

Turning to the SO(6) part, we see that the contribution from the SO(6) part is given

by

6

√
r2 +

1

36
.

Hence the total bosonic contribution is

Γ
(0)
B = 8

√
r2 +

1

36
. (3.6)

Finally, let us examine the fermionic contribution. The effective action is given by

eiΓF = det

[(
i∂t −

1

12

)(
i∂t −

5

12

)
− r2

]4

· det

[(
i∂t +

1

12

)(
i∂t +

5

12

)
− r2

]4

(3.7)

Here, noting that
(

i∂t −
1

12

)(
i∂t −

5

12

)
− r2 = −

(
∂2

t +
1

2
i∂t −

5

144

)
,

the total fermionic contribution is evaluated as

Γ
(0)
F = −8

√
r2 +

1

36
. (3.8)

Therefore the total contribution from the ε-dependent parts becomes zero:

Γ
(0)
eff = Γ

(0)
B + Γ

(0)
F

= 8

√
r2 +

1

36
− 8

√
r2 +

1

36
= 0 .

Thus, the one-loop flatness:

Γ
(0)
eff = 0 , (3.9)

has been shown in our setup.
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3.2 Evaluation of ε-dependent part

The evaluation of the ε-dependent parts is quite complicated and hence we need to use

the Mathematica [31]. Here we shall show only the results after evaluating the functional

traces. We note that, due to the enormous complexity of computation, the results are

obtained in the large-distance expansion, r À 1.

First of all, at ε2 order, we obtain

Γ
(2)
B = −Γ

(2)
F

= −

∫
dt

(
2

r
+

17

22 · 32

1

r3
+

61

26 · 33

1

r5
+

1129

29 · 36

1

r7
+

26891

214 · 38

1

r9

)
+ O(r−11) . (3.10)

We can see the cancellation between contributions of bosons and fermions up to the 1/r9

order. It is, however, possible to show that the cancellation is exact from the numerical

analysis. Hence we have shown that the effective action with ε2 order should vanish:

Γ
(2)
eff = 0 . (3.11)

Now let us see the effective action at ε4 order. The contribution from the physical

modes in the SO(3) part is given by

Γ̂
(4)
SO(3) =

∫
dt

(
−

1

25

1

r3
−

883

28 · 3

1

r5
+

11 · 19 · 443

212 · 33

1

r7
+

11 · 29 · 28793

215 · 36

1

r9

)
+ O(r−11) ,

(3.12)

and, for the SO(6) part, the contribution is

Γ
(4)
SO(6) =

∫
dt

(
−

3

25

1

r3
+

77

28

1

r5
+

19 · 131

212 · 3

1

r7
+

132 · 4271

215 · 35

1

r9

)
+ O(r−11) . (3.13)

Hence the total contribution of the bosonic parts is

Γ
(4)
B = Γ̂

(4)
SO(3) + Γ

(4)
SO(6)

=

∫
dt

(
−

1

23

1

r3
−

163

26 · 3

1

r5
+

17 · 19 · 89

210 · 33

1

r7
+

131 · 21661

213 · 36

1

r9

)
+ O(r−11) . (3.14)

The contribution of the fermions is totally represented by

Γ
(4)
F =

∫
dt

(
1

23

1

r3
+

163

26 · 3

1

r5
+

71 · 163

210 · 33

1

r7
+

773 · 1493

213 · 36

1

r9

)
+ O(r−11) . (3.15)

Thus the net effective action at ε4 order is given by

Γ
(4)
eff = Γ

(4)
B + Γ

(4)
F

=

∫
dt

(
35

24

1

r7
+

385

576

1

r9

)
+ O(r−11) . (3.16)

The contributions of the parts with 1/r , 1/r3 and 1/r5 are exactly canceled out. These

cancellations would be basically due to the supersymmetries. And the resulting effective
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potential is 1/r7-type as in the case of the BFSS matrix model. We should note that

the above expression is written in the Minkowski formulation and so the leading term of

the potential is attractive. Then we should note that the subleading term of order 1/r9

exists and it is also attractive. Firstly, the term of 1/r9-type does not appear in the

BFSS case where the subleading term is 1/r11 and this corresponds to the dipole-dipole

interaction . The presence of the 1/r9 term implies the existence of the dipole-graviton

interaction or the interaction between single poles. The appearance of this term is a new

effect intrinsic to the pp-wave case. Furthermore, we should note that the subleading term

is attractive while the subleading term in the spherical membrane cases is repulsive. Since

the transverse SO(9) symmetry is broken due to the effect of non-vanishing curvature of

the pp-wave background, it is not a mystery to obtain the different graviton potential in

each of the SO(3) and SO(6) symmetric spaces. It is, however, still interesting to see

the apparent difference between the graviton interactions in the SO(3) and the SO(6)

symmetric spaces.

4. Conclusion and discussion

We have computed the two-body interaction potential between the point-like graviton

solutions in a sub-plane in the SO(3) symmetric space by considering the configuration

drawn in Fig.1. The leading term of the potential is 1/r7 and thus strongly suggests that

our result should be closely related to the scattering in the light-front eleven-dimensional

supergravity. We expect that this potential should be realized from the computation in the

supergravity side by using the spectrum of the linearized supergravity around the pp-wave

background [32]. In this direction the work [33] would be helpful.

So far we have computed the interaction of the spherical membrane fuzzy spheres

(giant gravitons) in the SO(6) space and the scattering of the point-like gravitons in the

SO(3) symmetric space. It is interesting to consider the interaction between a point-like

graviton and a spherical membrane graviton. We hope that the result will be reported in

the near future as another publication [34].

Our analysis and results will be an important clue to study some features of M-theory

on the pp-wave background and to shed light on the substance of M-theory.
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